Extensions 1→N→G→Q→1 with N=C32 and Q=C4.10D4

Direct product G=N×Q with N=C32 and Q=C4.10D4
dρLabelID
C32×C4.10D4144C3^2xC4.10D4288,319

Semidirect products G=N:Q with N=C32 and Q=C4.10D4
extensionφ:Q→Aut NdρLabelID
C32⋊(C4.10D4) = (C3×C12).D4φ: C4.10D4/C4D4 ⊆ Aut C32484C3^2:(C4.10D4)288,376
C322(C4.10D4) = C3⋊Dic3.D4φ: C4.10D4/C2×C4C4 ⊆ Aut C32484-C3^2:2(C4.10D4)288,428
C323(C4.10D4) = C12.14D12φ: C4.10D4/C2×C4C22 ⊆ Aut C32484C3^2:3(C4.10D4)288,208
C324(C4.10D4) = C12.71D12φ: C4.10D4/C2×C4C22 ⊆ Aut C32484-C3^2:4(C4.10D4)288,209
C325(C4.10D4) = C3×C12.47D4φ: C4.10D4/M4(2)C2 ⊆ Aut C32484C3^2:5(C4.10D4)288,258
C326(C4.10D4) = C12.20D12φ: C4.10D4/M4(2)C2 ⊆ Aut C32144C3^2:6(C4.10D4)288,299
C327(C4.10D4) = C3×C12.10D4φ: C4.10D4/C2×Q8C2 ⊆ Aut C32484C3^2:7(C4.10D4)288,270
C328(C4.10D4) = (C6×C12).C4φ: C4.10D4/C2×Q8C2 ⊆ Aut C32144C3^2:8(C4.10D4)288,311


׿
×
𝔽